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RELIABILITY BASED DATA ALLOCATION
AND RECOVERY IN A STORAGE SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 13/086,267 filed Apr. 13, 2011. The content of the
above-identified application is incorporated herein by refer-
ence in its entirety.

FIELD OF THE INVENTION

At least one embodiment of the present invention pertains
to data storage systems, and more particularly, to a technique
for data allocation and recovery in a storage system based on
reliability values associated with the data.

BACKGROUND

Network based storage (or simply, “network storage”) is
a common approach to backing up data, making large
amounts of data accessible to multiple users, and other
purposes. In a network storage environment, a storage server
makes data available to client (host) systems by presenting
or exporting to the clients one or more logical containers of
data. There are various forms of network storage, including
network attached storage (NAS) and storage area network
(SAN). In a NAS context, a storage server services file-level
requests from clients, whereas in a SAN context a storage
server services block-level requests. Some storage servers
are capable of servicing both file-level requests and block-
level requests.

The technology marketplace has been experiencing sev-
eral trends that impact existing network storage technolo-
gies. For example, the density of magnetic storage media
continues to grow in network storage systems, but perfor-
mance of such media, measured as input-output operations
per second (IOPS) per spindle, has not exhibited a similar
growth rate. That is, magnetic media have increased in
density at a rate greater than the rate at which their speed has
increased. As a result, data operations, such as backup,
maintenance, recovery of failed drives, etc., take longer to
complete, resulting in myriad performance and reliability
issues. For example, the longer recovery time of a failed
drive presents a window of vulnerability, during which the
ability to protect new data is compromised. Moreover, the
processing cycles spent in the longer recovery time also
affects the overall performance of the storage system.

Presently, the underlying physical layer of a storage
system does not have a semantic understanding of the stored
data. That is, for example, the underlying physical layer does
not distinguish data corresponding to important business
information versus data corresponding to scratch-space
information. Consequently, the physical layer does not make
any effort to distinguish or otherwise prioritize the data for
the various data operations. This lack of semantic under-
standing further exacerbates the performance and reliability
issues associated with the various data operations.

SUMMARY

Introduced below is a layout and file system architecture
for a storage system, and associated methods and apparatus,
collectively called “the system introduced here” or simply
“the system” in the discussion which follows. The system
provides highly flexible data layouts that can be tailored to
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2

numerous different applications and use cases. Among other
features, the system is capable of allocating physical storage
units for data corresponding to logical storage entities based
on, for example, reliability service level objectives (SLOs),
as discussed below.

The system, in at least one embodiment, assigns a reli-
ability value to each logical container of data (e.g., a
volume) located at an upper logical layer of the storage
system. In one embodiment, the reliability value is assigned
according to objectives dictated by reliability SL.Os. In other
embodiments, the reliability value may be assigned by the
user via a management interface of the storage system, or
may automatically be assigned based on the type of data
stored in the logical container.

Based on the reliability value, the system identifies a
particular parity group from the underlying physical storage
layer (e.g., a RAID layer) of the storage system for storing
data corresponding to the logical container. A parity group is
a collection of storage areas from one or more physical
storage devices sharing one or more common protection
level attributes (e.g., parity protection level, type of storage
medium, etc.). In an illustrative embodiment, each “parity
group” is used to denote storage areas or storage slices,
selected from one or more physical storage devices (e.g., a
collection of slices from different disk drives), that use a
common parity-based protection scheme against data loss.
The parity group for a given logical container of data is
chosen based on the reliability value as dictated, for
example, by the reliability SLOs. For example, a logical
container with a high reliability requirement is assigned a
parity group with the highest protection level. The system
then allocates data for the logical container within physical
storage blocks selected from the assigned parity group. In
embodiments, the system attaches the reliability information
of the logical container to the parity group and also to the
physical storage devices in which the data is stored. For
example, the reliability level information is attached as
metadata to the parity group.

In this manner, the underlying physical storage layer has
semantic understanding of the importance of the data stored
in the physical storage devices. That is, the underlying
physical layer has the capability to distinguish and prioritize
data stored in the physical storage devices. Consequently,
the underlying physical storage layer can prioritize various
data operations (e.g., backup operations, data recovery
operations) based on the values of the attached reliability
information. An illustrative example is the recovery of a
failed physical data element (e.g., a failed disk drive). The
physical data element may comprise storage blocks or slices
belonging to different parity groups. Accordingly, prior to
recovery of a failed physical data element (e.g., a disk drive),
the system identifies the parity groups that the failed element
participated in. The system then prioritizes the list of parity
groups, and performs the recovery process first on the
physical storage device belonging to the parity groups with
the highest reliability values (as indicated, for example, by
reliability SLOs).

In this manner, the system has the ability to, for example,
efficiently postpone or otherwise de-prioritize data recovery
operations on physical storage devices with lower reliability
values. Prioritizing the data recovery operations on the
parity groups with high reliability values results in signifi-
cant performance and reliability improvement. For example,
in the reconstruction or failure recovery scenario, the reli-
ability-based prioritization minimizes the window of vul-
nerability to data-loss due to failure of another physical
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storage element, and also lowers the interference with sys-
tem’s foreground/primary workload.

Other aspects of the technique will be apparent from the
accompanying figures and from the detailed description
which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

One or more embodiments of the present invention are
illustrated by way of example and not limitation in the
figures of the accompanying drawings, in which like refer-
ences indicate similar elements and in which:

FIG. 1 illustrates a network storage environment in which
the present invention can be implemented;

FIG. 2 illustrates a clustered network storage environment
in which the present invention can be implemented;

FIG. 3 is a high-level block diagram showing an example
of the hardware architecture of a storage controller that can
implement one or more storage server nodes;

FIG. 4 illustrates an example of a storage operating
system of a storage server node;

FIG. 5 shows various layers of data storage in accordance
with the technique introduced here;

FIG. 6 illustrates an example of particular types of data
layers;

FIG. 7 illustrates the details of the storage manager,
according to one embodiment;

FIG. 8 illustrates how parity groups are constructed from
a RAID group;

FIG. 9 illustrates an example of the layering within
regions which include extents;

FIG. 10 illustrates how volumes can be represented as
trees of extents that are contained within regions;

FIG. 11 illustrates an example of the various data layers
from the volume level down to the RAID level;

FIG. 12 illustrates an example of physical storage allo-
cation according to reliability values associated with logical
entities;

FIG. 13 describes a process for allocation of physical
storage blocks based on reliability values associated with
logical data entities; and

FIG. 14 illustrates an exemplary process by which the
system performs prioritized data operations.

DETAILED DESCRIPTION

References in this specification to “an embodiment”, “one
embodiment”, or the like, mean that the particular feature,
structure or characteristic being described is included in at
least one embodiment of the present invention. Occurrences
of such phrases in this specification do not necessarily all
refer to the same embodiment.
1. Overview

A storage system provides highly flexible data layouts that
can be tailored based on reliability considerations. The
system allocates reliability values to logical containers at an
upper logical level of the system based, for example, on
objectives established by reliability SL.Os. Based on the
reliability value, the system identifies a specific parity group
from a lower physical storage level of the system for storing
data corresponding to the logical container. After selecting a
parity group, the system allocates the data to physical
storage blocks within the parity group. In embodiments, the
system attaches the reliability value information to the parity
group and the physical storage units storing the data. In this
manner, the underlying physical layer has a semantic under-
standing of reliability considerations related to the data
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4

stored at the logical level. Based on this semantic under-
standing, the system has the capability to prioritize data
operations (e.g., recovery operations, maintenance opera-
tions, etc.) on the physical storage units according to the
reliability values attached to the parity groups.

II. System Environment

FIGS. 1 and 2 show, at different levels of detail, a network
configuration in which the system can be implemented. In
particular, FIG. 1 shows a network data storage environ-
ment, which includes a plurality of client systems 104.1-
104.2, a storage server system 102, and computer network
106 connecting the client systems 104.1-104.2 and the
storage server system 102. As shown in FIG. 1, the storage
server system 102 includes at least one storage server 108,
a switching fabric 110, and a number of mass storage
devices 112, such as disks, in a mass storage subsystem 105.
Alternatively, some or all of the mass storage devices 212
can be other types of storage, such as flash, SSDs, tape
storage, etc.

The storage server (or servers) 108 may be, for example,
one of the FAS family of storage server products available
from NetApp, Inc. The client systems 104.1-104.2 are
connected to the storage server 108 via the computer net-
work 106, which can be a packet-switched network, for
example, a local area network (LAN) or wide area network
(WAN). Further, the storage server 108 is connected to the
disks 112 via a switching fabric 110, which can be a fiber
distributed data interface (FDDI) network, for example. It is
noted that, within the network data storage environment, any
other suitable numbers of storage servers and/or mass stor-
age devices, and/or any other suitable network technologies,
may be employed.

The storage server 108 can make some or all of the
storage space on the disk(s) 112 available to the client
systems 104.1-104.2. For example, each of the disks 112 can
be implemented as an individual disk, multiple disks (e.g., a
RAID group) or any other suitable mass storage device(s).
The storage server 108 can communicate with the client
systems 104.1-104.2 according to well-known protocols,
such as the Network File System (NFS) protocol or the
Common Internet File System (CIFS) protocol, to make data
stored on the disks 112 available to users and/or application
programs. The storage server 108 can present or export data
stored on the disk 112 as volumes to each of the client
systems 104.1-104.2. A “volume” is an abstraction of physi-
cal storage, combining one or more physical mass storage
devices (e.g., disks) or parts thereof into a single logical
storage object (the volume), and which is managed as a
single administrative unit, such as a single file system. A
“file system” is a structured (e.g., hierarchical) set of stored
logical containers of data (e.g., volumes, logical units
(LUNSs), directories, files). Note that a “file system” does not
have to include or be based on “files” per se; a file system
can be any structured set of logical containers of data, such
as files, directories, LUNS, etc. A “block™, as the term is used
herein, is the smallest addressable unit of contiguous data
used by a given storage system to manipulate and transfer
data. In conventional storage systems, a block is commonly
(though not necessarily) 4 KB in length.

Various functions and configuration settings of the storage
server 108 and the mass storage subsystem 105 can be
controlled from a management station 106 coupled to the
network 106. Among many other operations, a data object
migration operation can be initiated from the management
station 106.

FIG. 2 depicts a network data storage environment, which
can represent a more detailed view of the environment in
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FIG. 1. Note that the clustered environment of FIG. 2 is only
an example of an environment in which the system intro-
duced here can be implemented. The system introduced here
can alternatively be implemented in a non-clustered network
storage environment. Likewise, the system introduced here
is not limited to being implemented within a storage server,
ie., it can be implemented in essentially any form of
processing/computing system.

The environment 200 in FIG. 2 includes a plurality of
client systems 204 (204.1-204.M), a clustered storage server
system 202, and a computer network 206 connecting the
client systems 204 and the clustered storage server system
202. As shown in FIG. 2, the clustered storage server system
202 includes a plurality of server nodes 208 (208.1-208.N),
a cluster switching fabric 210, and a plurality of mass
storage devices 212 (212.1-212.N), which can be disks, as
henceforth assumed here to facilitate description. Alterna-
tively, some or all of the mass storage devices 212 can be
other types of storage, such as flash memory, SSDs, tape
storage, etc. Note that more than one mass storage device
212 can be associated with each node 208.

Each of the nodes 208 is configured to include several
modules, including an N-module 214, a D-module 216, and
an M-host 218 (each of which can be implemented by using
a separate software module) and an instance of a replicated
database (RDB) 220. Specifically, node 208.1 includes an
N-module 214.1, a D-module 216.1, and an M-host 218.1;
node 208.N includes an N-module 214.N, a D-module
216.N, and an M-host 218.N; and so forth. The N-modules
214.1-214.M include functionality that enables nodes 208.1-
208.N, respectively, to connect to one or more of the client
systems 204 over the network 206, while the D-modules
216.1-216.N provide access to the data stored on the disks
212.1-212.N, respectively. The M-hosts 218 provide man-
agement functions for the clustered storage server system
202. Accordingly, each of the server nodes 208 in the
clustered storage server arrangement provides the function-
ality of a storage server.

The RDB 220 is a database that is replicated throughout
the cluster, i.e., each node 208 includes an instance of the
RDB 220. The various instances of the RDB 220 are updated
regularly to bring them into synchronization with each other.
The RDB 220 provides cluster-wide storage of various
information used by all of the nodes 208, including a volume
location database (VLDB) (not shown). The VLDB is a
database that indicates the location within the cluster of each
volume in the cluster (i.e., the owning D-module 216 for
each volume) and is used by the N-modules 214 to identify
the appropriate D-module 216 for any given volume to
which access is requested.

The nodes 208 are interconnected by a cluster switching
fabric 210, which can be embodied as a Gigabit Ethernet
switch, for example. The N-modules 214 and D-modules
216 cooperate to provide a highly-scalable, distributed stor-
age system architecture of a clustered computing environ-
ment implementing exemplary embodiments of the present
invention. Note that while there is shown an equal number
of N-modules and D-modules in FIG. 2, there may be
differing numbers of N-modules and/or D-modules in accor-
dance with various embodiments of the technique described
here. For example, there need not be a one-to-one corre-
spondence between the N-modules and D-modules. As such,
the description of a node 208 comprising one N-module and
one D-module should be understood to be illustrative only.

FIG. 3 is a diagram illustrating an example of a storage
controller that can implement one or more of the storage
server nodes 208. In an exemplary embodiment, the storage
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controller 301 includes a processor subsystem that includes
one or more processors 310 connected to an interconnect
390. The storage controller 301 further includes a memory
320, a network adapter 340, a cluster access adapter 370 and
a storage adapter 380, all interconnected by the interconnect
390. The cluster access adapter 370 includes multiple ports
adapted to couple the node 208 to other nodes 208 of the
cluster. In the illustrated embodiment, Ethernet is used as the
clustering protocol and interconnect media, although other
types of protocols and interconnects may be utilized within
the cluster architecture described herein. In alternative
embodiments where the N-modules and D-modules are
implemented on separate storage systems or computers, the
cluster access adapter 270 is utilized by the N-module 214
and/or D-module 216 for communicating with other N-mod-
ules and/or D-modules of the cluster.

The storage controller 301 can be embodied as a single-
or multi-processor storage system executing a storage oper-
ating system 330 that preferably implements a high-level
module, such as a storage manager, to logically organize the
information as a hierarchical structure of named directories,
files and special types of files called virtual disks (herein-
after generally “blocks™) on the disks. Illustratively, one
processor 310 can execute the functions of the N-module
214 on the node 208 while another processor 310 executes
the functions of the D-module 216.

The memory 320 illustratively comprises storage loca-
tions that are addressable by the processors and adapters
340, 370, 380 for storing software program code and data
structures associated with the present invention. The pro-
cessor 310 and adapters may, in turn, comprise processing
elements and/or logic circuitry configured to execute the
software code and manipulate the data structures. The stor-
age operating system 330, portions of which is typically
resident in memory and executed by the processors(s) 310,
functionally organizes the storage controller 301 by (among
other things) configuring the processor(s) 310 to invoke
storage operations in support of the storage service provided
by the node 208. It will be apparent to those skilled in the
art that other processing and memory implementations,
including various computer readable storage media, may be
used for storing and executing program instructions pertain-
ing to the technique introduced here.

The network adapter 340 includes multiple ports to couple
the storage controller 301 to one or more clients 204 over
point-to-point links, wide area networks, virtual private
networks implemented over a public network (Internet) or a
shared local area network. The network adapter 340 thus can
include the mechanical, electrical and signaling circuitry
needed to connect the storage controller 301 to the network
206. Ilustratively, the network 206 can be embodied as an
Ethernet network or a Fibre Channel (FC) network. Each
client 204 can communicate with the node 208 over the
network 206 by exchanging discrete frames or packets of
data according to pre-defined protocols, such as TCP/IP.

The storage adapter 380 cooperates with the storage
operating system 330 to access information requested by the
clients 204. The information may be stored on any type of
attached array of writable storage media, such as magnetic
disk or tape, optical disk (e.g., CD-ROM or DVD), flash
memory, solid-state disk (SSD), electronic random access
memory (RAM), micro-electro mechanical storage and/or
any other similar media adapted to store information, includ-
ing data and parity information. However, as illustratively
described herein, the information is stored on disks 212. The
storage adapter 380 includes a plurality of ports having
input/output (1/0) interface circuitry that couples to the disks
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over an I/O interconnect arrangement, such as a conven-
tional high-performance, Fibre Channel (FC) link topology.

Storage of information on disks 212 can be implemented
as one or more storage volumes that map to a collection of
physical storage devices, which can be divided into one or
more RAID groups.

The storage operating system 330 facilitates clients’
access to data stored on the disks 212. In certain embodi-
ments, the storage operating system 330 implements a file
system that cooperates with one or more virtualization
modules to “virtualize” the storage space provided by disks
212. In certain embodiments, a storage manager 460 (FIG.
4) logically organizes the stored data, that described further
below. In one embodiment, the storage operating system 330
implements write-anywhere and copy-on-write functional-
ity; that is, any data or metadata can be written to any free
physical data block, and a modification to any logical data
block is always written to a new physical data block rather
than overwriting the original physical data block.

FIG. 4 is a diagram illustrating an example of storage
operating system 330 that can be used with the techniques
introduced here. In the illustrated embodiment the storage
operating system 330 includes multiple functional layers
organized to form an integrated network protocol stack or,
more generally, a multi-protocol engine 410 that provides
data paths for clients to access information stored on the
node using block and file access protocols. The multiproto-
col engine 410 in combination with underlying processing
hardware also forms the N-module 214. The multi-protocol
engine 410 includes a network access layer 412 which
includes one or more network drivers that implement one or
more lower-level protocols to enable the processing system
to communicate over the network 206, such as Ethernet,
Internet Protocol (IP), Transport Control Protocol/Internet
Protocol (TCP/IP), Fibre Channel Protocol (FCP) and/or
User Datagram Protocol/Internet Protocol (UDP/IP). The
multiprotocol engine 410 also includes a protocol layer
which implements various higher-level network protocols,
such as Network File System (NFS), Common Internet File
System (CIFS), Hypertext Transfer Protocol (HTTP), Inter-
net small computer system interface (iSCSI), etc. Further,
the multiprotocol engine 410 includes a cluster fabric (CF)
interface module 440a which implements intra-cluster com-
munication with D-modules and with other N-modules.

In addition, the storage operating system 330 includes a
set of layers organized to form a backend server 465 that
provides data paths for accessing information stored on the
disks 212 of the node 208. The backend server 465 in
combination with underlying processing hardware also
forms the D-module 216. To that end, the backend server
465 includes a storage manager module 460 that manages
any number of volumes 472, a RAID system module 480
and a storage driver system module 490.

The storage manager 460 primarily manages a file system
(or multiple file systems) and serves client-initiated read and
write requests. In at least one embodiment the storage
manager 460 implements the volumes/regions/extents/slabs
based storage techniques introduced here. The RAID system
module 480 manages the storage and retrieval of informa-
tion to and from the volumes/disks in accordance with a
RAID redundancy protocol, such as RAID-4, RAID-5,
RAID-DP or declustered RAID (discussed below), while the
disk driver system 490 implements a disk access protocol
such as Serial ATA (SATA), SCSI or FC protocol (FCP).

The backend server 465 also includes a CF interface
module 4405 to implement intra-cluster communication 470
with N-modules and/or other D-modules. The CF interface
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modules 440a and 4405 can cooperate to provide a single
file system image across all D-modules 216 in the cluster.
Thus, any network port of an N-module 214 that receives a
client request can access any data container within the single
file system image located on any D-module 216 of the
cluster.

The CF interface modules 440 implement the CF protocol
to communicate file system commands among the modules
of cluster over the cluster switching fabric 210 (FIG. 2).
Such communication can be effected by a D-module expos-
ing a CF application programming interface (API) to which
an N-module (or another D-module) issues calls. To that
end, a CF interface module 440 can be organized as a CF
encoder/decoder. The CF encoder of, e.g., CF interface 440a
on N-module 214 can encapsulate a CF message as (i) a
local procedure call (LPC) when communicating a file
system command to a D-module 216 residing on the same
node or (ii) a remote procedure call (RPC) when commu-
nicating the command to a D-module residing on a remote
node of the cluster. In either case, the CF decoder of CF
interface 4405 on D-module 216 de-encapsulates the CF
message and processes the file system command.

In operation of'a node 208, a request from a client 204 can
be forwarded as a packet over the network 206 and onto the
node 208, where it is received at the network adapter 340
(FIG. 3). A network driver of layer 412 processes the packet
and, if appropriate, passes it on to a network protocol and file
access layer for additional processing prior to forwarding to
the storage manager 460. At that point, the storage manager
460 interprets the request and generates operations to load
(retrieve) the requested data from the RAID system 480 if it
is not resident in memory 320. The storage manager 460
determines in which extent and in which region the data
resides. The region receives a request for that (portion of)
extent and in turn determines the slab(s) containing the
requested data. The request is then handed to the RAID
system module 480 for further processing and the determi-
nation of which storage device(s) hold the data, before
issuing requests to the appropriate storage device driver(s).
The storage device driver(s) access(es) the data from the
specified device(s) and loads the requested data block(s) in
memory for processing by the node. Upon completion of the
request, the node (and operating system) returns a reply to
the client 204 over the network 206.

The data request/response “path” through the storage
operating system 330 as described above can be imple-
mented in general-purpose programmable hardware execut-
ing the storage operating system 330 as software or firm-
ware. Alternatively, it can be implemented entirely or
partially in specially designed hardware. That is, in an
alternate embodiment of the invention, some or all of the
storage operating system 330 is implemented as logic cir-
cuitry embodied within, for example, one or more field
programmable gate arrays (FPGAs), application specific
integrated circuits (ASICs), programmable logic devices
(PLDs), or some combination thereof.

The N-module 214 and D-module 216 each can be
implemented as processing hardware configured by sepa-
rately-scheduled processes of storage operating system 330;
however, in an alternate embodiment, the modules may be
implemented as processing hardware configured by code
within a single operating system process. Communication
between an N-module 214 and a D-module 216 is thus
illustratively effected through the use of message passing
between the modules although, in the case of remote com-
munication between an N-module and D-module of different
nodes, such message passing occurs over the cluster switch-



US 9,477,553 Bl

9

ing fabric 210. A known message-passing mechanism pro-
vided by the storage operating system to transfer informa-
tion between modules (processes) is the Inter Process
Communication (IPC) mechanism. The protocol used with
the IPC mechanism is illustratively a generic file and/or
block-based “agnostic” CF protocol that comprises a col-
lection of methods/functions constituting a CF API.

III. System Internal Functionality and Architecture

The following is a description of the internal functionality
and architecture of an illustrative system that can be used to
practice the techniques described with reference to FIGS.
12-14 discussed below. Of course, it is understood that the
following system architecture and functionality is defined
only for convenience in understanding an exemplary mecha-
nism by which the techniques may be practiced. Other
mechanisms, with different architectures and internal func-
tionalities may also be used to practice the techniques
discussed herein, as long as the overall physical-to-logical
storage hierarchy (such as the generic architecture discussed
further below with reference to FIG. 12) is maintained.

The system described here includes a file system and
layout engine. As shown in FIG. 5, in one embodiment, the
system provides several distinct data layers, including: an
aggregate layer (also called “slab allocation layer”) 53
which sits on top of the RAID layer 54; a region layer 52
which sits on top of the aggregate layer 53; and a volume
layer (also called “file system layer) 51 which sits on top of
the region layer 52. In one embodiment, these layers are
implemented by the storage manager 460 (FIG. 4) in the
D-module 216 of each node 208 in a storage cluster, as
discussed further below.

In one embodiment, the system divides RAID groups 50
into two-dimensional arrays 55 of data blocks and then
further divides up those arrays into “slabs™ 56. Slabs 56 can
be defined along RAID stripe boundaries. The block arrays
55 and slabs 56 are contained within the aggregate layer 53.
The system further defines multiple “regions” 57 to contain
data in the region layer 52. Each region can include one or
more logical extents 59 (not shown in the region layer 52 in
FIG. 6, for simplicity). Allocated to each extent 59 is at least
a portion of one or more slabs 56 that are allocated to the
region that includes the extent.

The system also maintains multiple volumes 58, or file
systems, as logical containers of data in the volume layer.
Each volume 58 includes one or more of the logical extents
59 from one or more of the regions 57. Notably, the region
layer 52 hides the layouts of the logical extents within the
various regions 57 from the volume layer 51 (and therefore,
from the clients and users).

The various slabs 56 can be defined from a heterogeneous
pool of physical storage devices, and any given region 57
can include extents built from slabs of two or more different
types of physical storage device, such as flash memory,
solid-state drives (SSDs), HDDs, etc. By their nature, these
types of physical storage devices have different reliability
characteristics. Accordingly, the slabs defined from the
different physical storage devices have different reliability
characteristics. In embodiments, the various slabs 56 are
defined using a block of storage area (or storage slices)
selected from multiple physical storage devices, where the
storage areas use a common parity-based protection scheme
against data loss. Accordingly, in such embodiments, the
various slabs 56 would each correspond to a particular parity
group. Here, each slab may be envisioned as an abstraction
of a parity group to corresponding upper layers.

FIG. 6 illustrates an example of particular types of data
layers. The region layer 52 can include, for example, a

25

40

45

65

10

sequential access region, a random access region, and one or
more regions of various other types/purposes. The volume
layer 51 can include, for example, a conventional file
system, a binary large object (BLOB) store, a LUN and one
or more volumes of various other types/purposes. Also as
shown in FIG. 6, the physical storage devices 61 from which
the slabs are obtained can include, for example, HDDs,
SSDs, foreign LUNSs, raw flash, etc.

FIG. 7 illustrates the details of the storage manager 460,
according to one embodiment. In the illustrated embodi-
ment, the storage manager for 60 includes a volume manager
71, one or more volume layout managers 76, a region
manager 72, one or more region layout managers 73, a slab
manager 74, a regions/extents interface 75 and a block I/O
interface 77.

The volume layer 51 is created and managed by the
volume manager 71. The volume manager 71 handles the
creation and deletion of volumes. The storage manager 460
includes a volume layout manager 76 for each type of
volume in the volume layer 51. Each volume layout manager
76 implements the internal organization of the correspond-
ing volume type and is responsible for assembling externally
visible data objects (e.g., files or LUNs) from extents. It also
implements whatever naming scheme is appropriate for the
volumes’ objects (e.g., hierarchical pathnames for tradi-
tional file systems, LUN IDs for a LUN volume, etc.).

Below the volume manager 71 are a region manager 72
and a region layout manager 73, which provide and manage
regions. The region manager 72 manages the overall popu-
lation of regions associated with the storage manager460. It
decides on the assignment of individual extents to a suitable
region (e.g., one that includes slabs of physical storage of
particular characteristics). The region manager 72 also
decides when new regions are needed and what type(s) they
should be, and it creates them. It also monitors size and free
space of regions. For example, the region manager 72 might
decide that a region has grown too large and split it into two
smaller regions, or it might ask a region with a lot of free
space to return one or more slabs to the slab allocation
manager 74. When the volume layer 51 needs to create new
extents, the region manager 72 decides in which region(s) to
place the extents.

The storage manager 460 creates a separate region layout
manager 73 for each region in the region layer 52. Each
region layout manager 73 is responsible for managing the
internal functionality of the corresponding region, and in
particular, for determining the actual physical placement of
data within the region. More specifically, a region layout
manager 73 determines the allocation of the individual
extents to the physical storage blocks within the slabs that
make up the corresponding region (i.e., it makes layout
decisions for the extents stored in the region corresponding).
Each region layout manager 73 also manages and deter-
mines format and storage locations for its region-internal
metadata. Each region layout manager 73 provides a block
1/O interface 77 to the RAID layer.

The region/extents interface 75 provides communication
between the volume manager 71 on one hand and the region
manager 72 and region layout manager 73 on the other hand.
The slab allocation manager 74 sits below the region man-
ager 72 and region layout manager 73 and above the RAID
system module 480 (which implements the RAID layer) and
is responsible for creating and allocating slabs. The slab
allocation manager 74 allocates slabs in response to requests
from region layout managers 73. It has the global knowledge
of how many slabs of each type exist, and it can inform the
region manager 72 when it is low on a particular type of slab,



US 9,477,553 Bl

11

causing the region manager 72 to identify regions that are
underutilizing (and can therefore release) slabs of that type.
The slab allocation manager 74 requests parity groups from
the RAID system module 480, from which it carves out
slabs.

In one embodiment, the RAID layer is implemented as
“declustered” RAID. Declustered RAID is a RAID imple-
mentation that slices individual physical devices in the
heterogeneous pool into storage areas or “slices” and then
assembles the slices from different devices into different
parity groups, where each parity group comprises slices or
storage areas that have at least a common parity-based
protection scheme against data loss. In embodiments, the
slices within each parity group may have other common
physical characteristics (e.g., type of physical storage
device) in addition to the common parity-based protection
scheme characteristic. The size of the parity groups are not
tied to the physical size of the storage devices in the pool.

In one illustrative embodiment, as shown in FIG. 8, parity
groups are constructed from selected storage devices or
elements from the various RAID groups. For example, a
RAID aggregate 8102 may include a first group that is
comprised of SSD RAID elements 8104. A second RAID
group may be comprised of HDD RAID 8104 elements.
Disks (or other such storage elements) are selected from the
various RAID groups and selectively built in to various
parity groups. For example, parity group A may include
slices of disks selected from the various RAID groups of the
RAID aggregate 8102 that have a particular parity-based
protection scheme (e.g., 3+1 RAID 4) against data loss.
Similarly, parity group B includes slices of disks selected
from RAID groups, where the selected slices have a second
type of parity protection scheme. As illustrated in the
exemplary embodiment in FIG. 8, the slices of disks having
a common parity protection scheme (from the different
parity groups) are slid in to form different parity groups
(e.g., parity group A, parity group B, etc.).

Above the parity groups, the slab allocation layer 53 takes
the two-dimensional arrays of blocks and carves them along
stripe boundaries into many much smaller slabs of storage.
The number of stripes in a slab is related to the underlying
physical storage type; for example, HDD slabs may be at
least few tracks long, while SSD slabs may be at least an
erase block long. At the same time, slabs are kept relatively
small because they are the basic unit of space allocation to
the next higher level in the system, i.e., the regions.

A region holds logical (virtualized) extents of data. Each
extent is simply a range of bytes of data or metadata stored
in a region and accessed via an extent identifier (ID).
Reference counts for extents are maintained within the
region, allowing for external sharing of extents. The layout
and location of an extent within a region is hidden from the
users of the extent (i.e., from volumes, clients, end users).

The virtualization of extents within regions is an archi-
tectural advantage for the system. Traditional file systems
manage the performance, space efficiency and reliability of
an extent of data through direct control of the layout of the
data. In the system described here, expectations are
expressed, for example, through the SLO of an extent. A
region completely hides the details of the location of the data
and how the SLO is honored. This gives the region the
latitude to implement algorithms such as compression or
storing very similar extents together, sharing most of their
data blocks and the few divergences.

The isolation of the internal structure of regions allows for
the implementation of multiple internal region layout man-
ager entities which optimize the organization of the internals
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of'the region for specific workloads. Different regions can be
optimized for different purposes, including different internal
layouts and algorithms as well as dynamically shifting mixes
of underlying storage. Extents with very different SL.Os can
be stored in different regions. For example, in FIG. 9 there
are shown three types of extents, namely, LUN data (“L”),
small file data (“S”) and metadata (“M”). These three types
of extents are stored in three specialized regions, 91A, 91B
and 91C, each with its own internal format to map each
extent ID to its storage. The different regions 91A, 91B and
91C are also using different mixes of storage slabs, as
dictated by their need to satisty the SLOs on their extents.

The top layer of the system is the volume layer 51. As
shown in FIG. 10, volumes can be structured as trees of
variably sized extents. Bottom-level extents hold the data of
the volume, while higher-level extents store the metadata
that organizes the lower-level extents. In the example of
FIG. 10, three volumes, 121A, 121B and 121C, in an
aggregate are each made up of a tree of extents, where the
extents are maintained in three separate regions, 122A, 122B
and 122C. Each volume contains data as well as metadata.
Further, it can be seen that volume 121B includes two
different classes of data, as well as metadata. The different
classes of data and the metadata have different SL.Os and so
are stored in different types of regions. Administrators can
express their preferences for data sets through options in
data management software (the details of which are not
germane to the techniques introduced here). These prefer-
ences are translated into objectives (expectations) on the
particular volumes 121A, 121B and 121C and data objects
within them and eventually to objectives on the different
data and metadata extents. At the region level 52, all
objectives with regard to the performance, space efficiency
and reliability of the extents are conveyed through the SLO
of the extent.

Referring again to FIG. 6, the system allows for different
volume types. All data and metadata is stored in files, and
each file is a tree of extents rooted at the file’s inode (primary
metadata container). The inode itself can be stored in the
data extents of a separate inode file.

As is discussed in greater detail below, the SLOs of
metadata allow a volume to specially treat high level meta-
data, such as volume-level metadata blocks. The system can
store the high level metadata needed to boot the aggregate in
special purpose regions, allowing rapid boot, takeover and
high-level repair. By storing critical metadata in storage with
a high-level RAID redundancy, the system can reduce the
exposure to repair related downtime.

An example of a hierarchy of all of these layers is
illustrated in FIG. 11. The RAID system module 480 has
assembled slices of HDDs and SSDs into virtualized RAID
groups and assembled those RAID groups into an aggregate.
The slab allocation layer 53 sees these parity groups as large
arrays 127 of blocks, which it cuts into slabs. Hence, the
system has sliced the parity groups 123 into slabs 124 and
allocated some of those slabs 124 into two regions 125. The
two regions 125 are holding different classes of data (ex-
tents) from the two volumes 126 above them. Finally, the
data in the volumes 126 is exported through the CF interface
44056 (FIG. 4).

The access path to a data container can be similar to that
in a conventional file system. For example, each container
can be identified in the storage cluster by its unique ID. The
N-modules 214 route data to the appropriate D-module 216
using the container’s unique ID stored in a system-wide map
(e.g., the VLDB).
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IV. RAID/Storage Manager Interface

In one embodiment, the RAID layer (or more precisely,
the RAID system module 480) communicates a list of its
parity groups to the storage manager 460. For each parity
group, the RAID layer informs the storage manager 460 of
the parity groups’ width, i.e., the number of slices mapped
to different devices that can hold data, number of blocks,
block size, type of physical device (e.g., HDD, SSD) and
potentially subtypes (e.g., RPM, inside tracks, etc.). Since
there are generally massive commonalities between parity
groups within a RAID group or aggregate, this can be
achieved with a single type field and a table lookup. The
system can tag blocks written to RAID with the triplet
(parity group ID, slice number, block offset).

V. Slabs

As described above, the slab allocation layer 53 takes the
parity groups supplied by RAID and carves them into slabs
which are smaller subarrays of blocks allocated from the
parity group’s larger array. Slabs inherit their performance
and reliability traits from their parity group. They are
allocated as a range of parity stripes, so the width of all slabs
on a parity group is uniform within the group. The degree of
freedom in slab allocation is the number of stripes in the
slab. Slabs can be created in a range of standard sizes and
can be subdivided or combined as needed. On spinning
media (e.g., HDDs), a minimum slab length may be chosen
to approximate a small multiple of track size, while on SSDs
or storage attached flash the minimum slab length may be an
erase block, for example.

V1. Regions

Regions are virtual (logical) storage containers that use a
collection of slabs to hold logical extents of reference
counted data. A region will “know” at least some physical
and reliability characteristics of each slab that is allocated to
it, including:

How efficient that type of slab is for sequential and
random I/O (this is one way the system can distinguish
flash from HDD).

Ideal 1/O size (e.g., for disk slabs the underlying disks’
track size)

Parallelism, i.e., the number of distinct devices making up
the slab. For RAID this will be the number of data
drives.

Reliability level information corresponding to the slab
(e.g., a parity-based protection scheme that commonly
applies to the underlying storage blocks)

VII. Extents

A file (within a volume) is made up of one or more
extents, which are contained within one or more different
regions. An extent is a logical piece of data. Different extents
can be of different sizes. In one embodiment, extents can be
relatively large, e.g., on the order of many tens of MB. For
each extent, the region also stores an “extent descriptor,”
which is a collection of metadata about the extent (similar to
an inode). The extent descriptor will keep information such
as the extent’s size, when it was created, and its SLO. The
extent descriptor is also used by the region layout manager
73 to translate from logical addresses in the extent to
physical addresses in the storage managed by the region.
This can be done by using a buffer tree similar to that used
by conventional block-oriented file systems.

The above description provided the internal functionality
and architecture of an illustrative system that can be used to
practice the techniques described with reference to FIGS.
12-14 discussed below. As indicated above, it is understood
that the above system architecture and functionality is
illustrative, and other systems, with different architectures
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and internal functionalities may also be used to practice the
techniques discussed in the following sections, as long as the
overall physical-to-logical storage hierarchy (such as the
generic architecture discussed further below with reference
to FIG. 12) is maintained.

IX. Allocation of Physical Storage Blocks Based on Reli-
ability SLOs

As noted above, the system described here can dynami-
cally manage data allocation in the physical layer (e.g., the
RAID layer) according to reliability information associated
with higher-level logical data (e.g., volume level data). The
major principle here is that, toward implementing a “service
level storage system”, the system can use, for example,
SLOs to determine the type of reliability required for
allocating a particular logical entity (e.g., a volume, a file, a
directory, etc.), and then allocate physical data storage
blocks for the logical entity based on the reliability.

In embodiments, the system allocates data corresponding
to the logical entity to a particular parity group based on the
reliability value associated with the logical entity. For
example, SLOs may define a high reliability requirement for
logical entities representing an important project workspace
(e.g., a directory or a volume corresponding to a company’s
vital employee profile management project) and a low
reliability requirement for logical entities representing
unimportant and temporary storage areas (e.g., a directory
designated as “scratch” space for holding temporary files).
The system, in embodiments, allocates physical storage
blocks for each logical entity based on the reliability defi-
nitions. For example, data corresponding to the project
workspace is allocated to physical storage blocks from, for
example, a parity group that has high protection level (e.g.,
RAID-DP). Data corresponding to the scratch space is
allocated to physical storage blocks from, for example, a
parity group that has a lesser protection level (e.g., RAID-1).

In particular, such reliability SLO based allocation allows
the system to make perform efficient data operations. For
example, the system prioritizes the execution of background
maintenance operations (e.g., disk consistence checks)
based on the reliability level associated with the various
parity groups. In an illustrative embodiment, the reliability
level of the various parity groups are encoded within the
metadata associated with the parity groups. Prior to running
a background maintenance operation on a given physical
storage element (e.g., a hard disk), the system retrieves a list
of parity groups the physical storage element participated in,
and orders the list according to the reliability levels associ-
ated with the parity groups. Subsequently, the system pri-
oritizes operations according to the ordered list. In one
example of a prioritized operation, the system may run more
frequent background maintenance operations on parity
groups (i.e., storage blocks comprised in parity groups) with
high reliability values and occasional background mainte-
nance operations on parity groups with lower reliability
values. This way, the system’s resources are freed up and
used more effectively in performing maintenance operations
on important blocks, instead of uniformly spending the
resources across all parity groups.

In another example of such reliability SLO based data
operations, the system prioritizes reconstruction of failed
physical storage elements (e.g., a failed drive) based on the
reliability levels or values associated with the various parity
groups of the system. For example, upon detecting a failed
drive, the system identifies the list of parity groups the drive
participated in, and orders the parity groups according to
their associated reliability values. Storage blocks in the
parity groups with the highest reliability values are recon-
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structed first. The remaining parity groups are reconstructed
according to the prioritized order based on the reliability
values. In some instances, the reconstruction may also be
dynamically scheduled such that the high reliability parity
groups are reconstructed first, and the lower reliability parity
groups are scheduled for reconstruction during system idle
times.

It is understood that such reliability-based prioritized
execution of operations, based on reliability levels attached
to the parity groups (according to, for example, reliability
SLO targets of corresponding logical entities), may be
extended to other data operations (e.g., snapshot creation,
data deduplication, or other such operations as understood
by a person of ordinary skill in the art.) related to the
physical storage blocks. The above reliability-based opera-
tions are further illustrated in detail with reference to FIG.
12 below.

FIG. 12 illustrates an example of physical storage allo-
cation according to reliability values associated with logical
entities. FIG. 12 represents a high-level illustration of a
system architecture showing the interplay between logical
entities and corresponding physical storage elements of a
storage system. In the way of a non-limiting example, the
above exemplary architecture discussed with reference to
FIGS. 5-11 are used to describe how the reliability infor-
mation is relayed from the logical entity to the physical
storage blocks.

The system first attaches the reliability value information
to an entity (e.g., volume 1202) in the logical layer. In
embodiments, the reliability value information is stored
along with metadata attached to the logical entity. The
reliability value may be assigned in one of several ways. In
one embodiment, the reliability value is determined based
on objectives or targets established by storage SLOs, as
indicated in block 1232. While many different characteris-
tics can be captured in storage SL.Os (e.g., latency, through-
put, reliability, availability, etc.), to simplify description the
following discussion will only cover reliability SLOs. An
SLO can be embodied as a key-value pair. SLOs can express
reliability values based on particular data-types or based on
where the data is stored. For example, SL.Os may define data
stored in project spaces or personal work-directories as
“gold” reliability standards, and may define data stored in
temporary “scratch” spaces as “bronze” reliability standards.
Alternately, or in addition to such standards, SLOs may
define ranking of volumes based on user-assigned settings to
the volumes or even the logical data (e.g., files, directories,
etc.) stored in volumes. In one embodiment, therefore, a
storage SLO assigns a reliability level for each high-level
logical entity (e.g., volume 1202) of the storage system. The
reliability value indicated by the SLO is stored or attached
to the metadata of the high-level logical entity 1202.

In embodiments, the reliability values may be assigned to
a high-level logical entity 1202 based on inputs received
from a user of the storage system, as indicated in block 1234
of FIG. 12. For example, an administrator establishing or
allocating the various logical entities for various tasks or
users may categorically assign reliability values to each of
the logical entities. In instances, the administrator may
assign the values in the form of SLO inputs that in turn get
stored as reliability values in the metadata of the logical
entities. In instances, the administrator may review the type
of logical entity being constructed and assign a reliability
value according to the type of data associated with the
logical entity. For example, the administrator may establish
a volume 1204 for a new project for maintaining employee
payroll records. Given the importance of the data to be
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stored in such a volume, the administrator may assign a
“gold” reliability value for the volume, and such a reliability
value gets attached to the metadata of volume 1204. In
examples, the administrator may accomplish such reliability
value assignment through a user interface of the storage
system. Such an interface may be afforded, for example, by
the M-Host 218 of the storage system.

In other embodiments, the reliability values may be
automatically assigned to the volume based on the type of
data being stored in a volume, as indicated in block 1236.
Again, this may be accomplished in conjunction with stor-
age SLOs or by means of inputs provided by a user. For
example, the storage system, when establishing a logical
entity (e.g., volume 1206), determines a type of data to be
stored in the entity. The type of data may be determined, for
example, based on information that may be supplied a
request is received to create the entity. Based on the type of
data, the system may look up information provided by
storage SLOs or input provided by the user to determine a
reliability value to be attached to the logical entity (e.g.,
volume 1206).

Using one of the above mechanisms, the reliability values
are attached to the high-level logical entities. In the illus-
tration in FIG. 12, volumes 1202 and 204 are assigned
“gold” standard reliability values because they are respec-
tively to be used to store data relating to a project workspace
or the user’s personal workspace. Volume 1206, designated
as scratch space, is assigned a “bronze” standard reliability
value. The eventual allocation of physical storage blocks is
now based on the reliability values assigned to the logical
entities. On a high-level, data from each logical entity is
assigned to physical storage blocks selected from a particu-
lar parity group based on the reliability levels. For example,
volumes 1202 and 1204, with their “gold” reliability values
are assigned to storage blocks from a parity group with a
high reliability coefficient. In one embodiment, the reliabil-
ity coefficient is a function of the protection level afforded
by the parity group. Accordingly, data corresponding to
volumes 1202 ad 1204 are allocated to physical storage
blocks selected from, for example, parity group 1 with
double-parity (e.g., a RAID-DP parity group) or other such
high protection characteristics. Volume 1206 may in turn be
allocated to physical storage blocks from parity group 3 that
has lower protection characteristics (e.g., a RAID 0 parity
group).

In embodiments, the reliability value is propagated to the
parity groups based on the data stored in physical storage
blocks selected from the parity groups. To illustrate this,
physical storage blocks that store data corresponding to the
“gold” reliability value are selected from parity group 1 in
the above example. Accordingly, a “gold” standard reliabil-
ity value is attached to parity group 1. In one embodiment,
such reliability value information may be attached to meta-
data associated with the parity group. In this manner, by
virtue of reliability values propagated to the parity groups
from the logical entity, reliability values are explicitly
attached to the parity groups. In embodiments, the reliability
values may also be attached to the individual storage devices
(e.g., storage disks) that are inherent to each parity group.

An illustrative manner by which the reliability informa-
tion may be propagated from the logical entity to the
physical storage blocks is explained with reference to the
exemplary architecture discussed above with reference to
FIGS. 5-11. Reliability values are first assigned and attached
to the individual volumes 58 in volume layer 51. In one
embodiment, such reliability values are attached to metadata
associated with the volumes 58. The volume layer 51, in
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addition to mapping the individual volumes 58 to individual
regions 57 and placing logical extents 59 within each region
57, also translates the volume-level reliability values to
corresponding regions 57 of the volumes 58. The reliability
value of each region is basically the same as the volume that
the region corresponds to. In embodiments, the reliability
information is stored in metadata associated with each
region and also attached to the logical extents defined by the
regions. When the regions 57 apportion storage by acquiring
slabs 56 from the aggregate layer 53, the system selects slabs
56 based on certain attributes related to the storage SLOs.
For example, metadata associated with the slabs 56 specify
attributes of the storage blocks specific to the slabs. The
attributes may specify attributes such as, for example, device
type (e.g., SSD, high-capacity SATA drive, etc.), [/O band-
width specifications, protection level (RAID-0, RAID-1,
RAID-DP, etc.), and other such parameters. The system
described here focuses on the protection-level attribute to
select a slab that has a protection level commensurate with
the reliability level specified for a volume corresponding to
the selected slab(s). For example, a slab with a “RAID-DP”
protection-level attribute is selected for volume 1206 (which
has a “gold” reliability value). In embodiments, the system
may also take into account other attributes (e.g., disk type)
in addition to the protection-level attribute in determining
the selection of particular slabs.

The selection of the slabs (based at least on the protection-
level attribute) effectively allows the system to select physi-
cal storage devices from a parity group that corresponds to
the protection-level attribute of the selected slabs. For
example, a slab with protection-level attribute “RAID-DP”
comprises physical storage blocks that have a RAID-DP
protection level. If, in some instances, a slab with a protec-
tion-level attribute “RAID-DP” and a disk-type attribute
“SSD” is selected, such a slab would comprise physical
storage blocks that satisfy both attributes. Accordingly, in
this manner, the selection of the protection-level attribute
dictates the selection of physical storage devices from a
specific parity group. The system stores data corresponding
to the logical entity (e.g., a volume from volume layer 51)
in the physical storage blocks selected from a specific parity
group (based, for example, on the SLO reliability value
associated with the logical entity).

As indicated above, in addition to allocating parity groups
based on the reliability value, the system also encodes (e.g.,
by incorporating as metadata information) the reliability
value of a logical entity to both the parity group from which
the physical storage blocks are selected, as well as to the
physical storage units as well. In this manner, the reliability
information is propagated and explicitly encoded at the
lower levels (e.g., RAID layer level 54) of the storage
system. Using this explicit reliability information, the lower
levels of the storage system can efficiently optimize data
operations such as, for example, integrity checking, backup,
reconstruction schedules, etc.

FIG. 13 now describes a process for allocation of physical
storage blocks based on reliability values associated with
logical data entities. The system initially identifies, at step
1302, a logical container (e.g., a volume) for which physical
storage blocks need to be allocated. At step 1304, the system
identifies whether the logical container already has an asso-
ciated reliability value (e.g., based on a prior user setting,
based on previously applied rules, etc.). For example, the
system may query metadata associated with the logical
container to determine whether a reliability value exists. If
such a reliability value does not exist, the system identifies
and assigns, at step 1306, a reliability value for the logical
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container. As discussed above, the system may identify the
reliability value for the logical container based on reliability
SLO objectives, or based on user input, or based on the type
of data the container may already or be configured to store.

The process then returns to step 1308, where the system
identifies a specific parity group (in the physical storage
entity layer) from which physical storage blocks should be
selected. In embodiments, the system selects such a parity
group based on the reliability level associated with the
logical entity. For example, a RAID-DP parity group is
selected for a logical container with a “gold” reliability
value, and a RAID O parity group is selected for a logical
container with a “bronze” reliability value. Subsequent to
selecting the specific parity group, the process continues to
step 1310, where data corresponding to the logical container
is allocated to physical storage blocks within the selected
parity group. Further, at step 1312, the system attaches the
reliability value to metadata associated with the parity
group. Additionally, in some instances, the system also
attaches the reliability value to the individual physical
storage units that store the information associated with the
logical entity.

As discussed above, allocation of the physical storage
blocks in this manner has several benefits. For example, the
system now has the capability to perform data operations
(e.g., maintenance operations, backup operations, recon-
struction operations, etc.) in a prioritized order based on the
reliability values of the parity groups. FIG. 14 now illus-
trates an exemplary process by which the system performs
such prioritized data operations. At step 1402, the system
receives a request (e.g., as a user input, as a system initiated
command, as an interrupt operation, as a failure recovery
operation, etc.) to perform the data operation relating to
physical storage units or even to an entire physical data
element (e.g., a failed drive).

In response to receiving the request, the process proceeds
to step 1404, where the system identifies a list of parity
groups that the physical store units or the physical data
element participated in. Subsequently, at step 1406, the
system determines (e.g., by analyzing metadata associated
with the parity groups) whether the parity groups have
associated reliability value information. If such information
is not available, as indicated in step 1408, the process shifts
to step 1410, where the system identifies the reliability value
associated with the parity groups by traversing the storage
hierarchy. For example, the system may query metadata
associated with slabs to which the parity groups are attached
to determine the reliability value. If that is unsuccessful, the
system traverses up the chain all the way, for example, to the
volume layer to identify the reliability value associated with
the logical entity. The system identifies the identified reli-
ability value to the associated parity groups and the process
then shifts to step 1412.

At step 1412, the list of parity groups is sorted to generate
a prioritized/ordered list of parity groups. In an illustrative
example, the ordered list first lists all the parity groups with
“gold” reliability values, then lists the “silver” parity groups,
and finally the “bronze” reliability values. Finally, at step
1414, the system performs the data operation on the physical
storage units according to the prioritized list. For example,
the data operation is first performed on physical storage
units belonging to “gold” rated parity groups. The operation
is then performed on the physical storage units belonging to
the “silver” rated parity groups and so on. The data operation
may also be staggered or selectively enabled based on user
preferences to further increase efficiency of the data opera-
tions. For example, during recovery of a failed drive, the
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physical storage units corresponding to the “gold” parity
groups are immediately reconstructed so as to avoid inter-
ruption of data access to information with high reliability
requirements. However, the reconstruction of the physical
storage units belonging to the “bronze” parity groups may be
pushed out indefinitely or performed only during the sys-
tem’s idle cycles. In this manner, both reliability and effi-
ciency objectives are met by ensuring that high-reliability
data is prioritized for data operations, while potentially
performance-intensive operations on a wide latitude of low-
reliability data is pushed out to idle cycles.

The techniques introduced above can be implemented by
programmable circuitry programmed or configured by soft-
ware and/or firmware, or entirely by special-purpose cir-
cuitry, or in a combination of such forms. Such special-
purpose circuitry (if any) can be in the form of, for example,
one or more application-specific integrated circuits (ASICs),
programmable logic devices (PLDs), field-programmable
gate arrays (FPGAs), etc.

Software or firmware to implement the techniques intro-
duced here may be stored on a machine-readable medium
and may be executed by one or more general-purpose or
special-purpose  programmable  microprocessors. A
“machine-readable medium”, as the term is used herein,
includes any mechanism that can store information in a form
accessible by a machine (a machine may be, for example, a
computer, network device, cellular phone, personal digital
assistant (PDA), manufacturing tool, any device with one or
more processors, etc.). For example, a machine-accessible
medium includes recordable/non-recordable media (e.g.,
read-only memory (ROM); random access memory (RAM);
magnetic disk storage media; optical storage media; flash
memory devices; etc.), etc.

The term “logic”, as used herein, can include, for
example, special-purpose hardwired circuitry, software and/
or firmware in conjunction with programmable circuitry, or
a combination thereof.

Although the present invention has been described with
reference to specific exemplary embodiments, it will be
recognized that the invention is not limited to the embodi-
ments described, but can be practiced with modification and
alteration within the spirit and scope of the appended claims.
Accordingly, the specification and drawings are to be
regarded in an illustrative sense rather than a restrictive
sense.

What is claimed is:

1. A storage system node for use in a cluster of network
storage nodes, the storage system node comprising:

a first module configured to provide network communi-
cation services to communicate with a network storage
host over a network, the first module further configured
to communicate with a separate module in each net-
work storage node in the cluster; and

a second module operatively coupled to the first module
and configured to provide storage and retrieval of data
objects in a nonvolatile mass storage facility that
includes multiple physical storage devices, the second
module configured to:

assign one of multiple reliability values to each of mul-
tiple parity groups of physical storage devices, wherein
a specific reliability value assigned to a given parity
group is based on a corresponding reliability value
associated with at least one block of physical storage
devices comprised in the given parity group;

receive a request to perform an operation on at least one
of overall physical storage devices associated with the
multiple parity groups of physical storage devices; and
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perform the operation on each of the at least one physical
storage device according to a prioritized order, the
prioritized order determined based on the reliability
values assigned to the parity groups associated with the
at least one physical storage device.

2. A storage system node as recited in claim 1, wherein the
operation is performed first on at least one physical storage
device belonging to a parity group with a highest reliability
value.

3. A storage system node as recited in claim 1, wherein
each of the at least one block of physical storage devices
pertains to a particular logical container of data, and wherein
the reliability value associated with each of the at least one
block of physical storage devices is based on a logical-
container reliability value associated with a corresponding
logical container of data.

4. A storage system node as recited in claim 3, the module
further configured to: assign a particular logical-container
reliability value to each logical container of data based on a
service level objective (SLO) associated with the storage
system node.

5. A storage system node as recited in claim 3, the second
module further configured to: assign a particular logical-
container reliability value to a given logical container of data
based on a type of data associated with the given logical
container of data.

6. A storage system node as recited in claim 3, the second
module further configured to: assign a particular logical-
container reliability value to a given logical container of data
based on an input provided by a user through a management
console of the storage system node.

7. A storage system node as recited in claim 3, wherein the
operation is at least one of: a consistency check relating to
the at least one physical storage device; or a post-failure
reconstruction of he at least one physical storage device.

8. A storage system node for use in a cluster of network
storage nodes, the storage system node comprising:

a first module configured to provide network communi-
cation services to communicate with a network storage
host over a network, the first module further configured
to communicate with a separate module in each net-
work storage node in the cluster; and

a second module operatively coupled to the first module
and configured to provide storage and retrieval of data
objects in a nonvolatile mass storage facility that
includes multiple physical storage devices associated
with multiple logical containers of data, each of the
multiple physical storage devices having multiple par-
ity groups, the second module configured to:

assign a logical-container reliability value to each of the
multiple logical containers of data;

for each of the multiple logical containers of data:

allocate a block of a particular parity group of physical
storage devices to store data, the particular parity group
selected for allocation based on a corresponding logi-
cal-container reliability value associated with each of
the multiple logical containers of data; and

assign a parity-group reliability value to the particular
parity group selected, the parity-group reliability value
based on the corresponding logical-container reliability
value.

9. A storage system node as recited in claim 1, wherein the

logical-container reliability value is based on a service level
objective (SLO) associated with the storage system node.
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10. A storage system node as recited in claim 1, wherein
the logical-container reliability value is based on a type of
data associated with each corresponding logical container of
data.

11. A storage system node as recited in claim 1, wherein
the logical-container reliability value is based on an input
provided by a user through a management console of the
storage system node.

12. A storage system node as recited in claim 1, wherein
the second module is further configured to: for each of the
multiple logical containers of data, store the parity-group
reliability value in a metadata container associated with the
particular parity group.

13. A storage system node as recited in claim 1, wherein
the second module is further configured to receive a request
to perform an operation on at least one of the multiple
physical storage devices; and perform the operation on the
at least one physical storage device according to a prioritized
order, the prioritized order determined based on parity-group
reliability values assigned to corresponding parity groups
associated with the at least one physical storage device.

14. A storage system node as recited in claim 13, wherein
the operation is at least one of: a consistency check relating
to the at least one physical storage device; or a post-failure
reconstruction of the at least one physical storage device.

15. A computer readable storage medium storing com-
puter-executable instructions, comprising:

instructions for assigning, in a data storage system having

multiple physical storage devices to store data, one of
multiple reliability values to each of multiple parity
groups of physical storage devices, wherein a specific
reliability value assigned to a given parity group is
based on a corresponding reliability value associated
with one or more blocks of physical storage devices
comprised in the given parity group;
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instructions for receiving a request to perform an opera-
tion on at least one of the multiple physical storage
devices of the data storage system; and

instructions for performing the operation on each of said

at least one physical storage device according to a
prioritized order, the prioritized order determined based
on the reliability values assigned to the parity groups
associated with said at least one physical storage
device.

16. A computer readable storage medium as recited in
claim 15, wherein the operation is performed first on one or
more physical storage devices belonging to a parity group
with a highest reliability value.

17. A computer readable storage medium as recited in
claim 15, wherein each of the one or more blocks of physical
storage devices pertains to a particular logical container of
data, and wherein the reliability value associated with each
of the one or more blocks of physical storage devices is
based on a logical-container reliability value associated with
a corresponding logical container of data.

18. A computer readable storage medium as recited in
claim 17, further comprising: instructions for assigning a
particular logical-container reliability value to each logical
container of data based on a service level objective (SLO)
associated with the data storage system.

19. A computer readable storage medium as recited in
claim 17, further comprising: instructions for assigning a
particular logical-container reliability value to a given logi-
cal container of data based on a type of data associated with
the given logical container of data.

20. A computer readable storage medium as recited in
claim 15, wherein the operation is at least one of: a consis-
tency check relating to the at least one physical storage
device; or a post-failure reconstruction of the at least one
physical storage device.
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